Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 603
Filter
1.
Protein Sci ; 33(4): e4940, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38511482

ABSTRACT

Estrogen receptor α is commonly used in synthetic biology to control the activity of genome editing tools. The activating ligands, estrogens, however, interfere with various cellular processes, thereby limiting the applicability of this receptor. Altering its ligand preference to chemicals of choice solves this hurdle but requires adaptation of unspecified ligand-interacting residues. Here, we provide a solution by combining rational protein design with multi-site-directed mutagenesis and directed evolution of stably integrated variants in Saccharomyces cerevisiae. This method yielded an estrogen receptor variant, named TERRA, that lost its estrogen responsiveness and became activated by tamoxifen, an anti-estrogenic drug used for breast cancer treatment. This tamoxifen preference of TERRA was maintained in mammalian cells and mice, even when fused to Cre recombinase, expanding the mammalian synthetic biology toolbox. Not only is our platform transferable to engineer ligand preference of any steroid receptor, it can also profile drug-resistance landscapes for steroid receptor-targeted therapies.


Subject(s)
Estradiol , Estrogen Receptor alpha , Animals , Mice , Estrogen Receptor alpha/genetics , Estrogen Receptor alpha/chemistry , Estrogen Receptor alpha/metabolism , Estradiol/chemistry , Estradiol/metabolism , Ligands , Tamoxifen/pharmacology , Tamoxifen/metabolism , Receptors, Estrogen/genetics , Receptors, Estrogen/chemistry , Receptors, Estrogen/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Mammals
2.
Environ Sci Technol ; 57(50): 21327-21336, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38059695

ABSTRACT

Exposure to environmental endocrine-disrupting chemicals (EDCs) can cause extensive health issues. However, specific EDCs remain elusive. This work aimed at performing nontargeted identification of estrogen receptor α (ERα)-active compounds using an ERα protein affinity assay combined with high-resolution mass spectrometry in the source and drinking water sampled from major rivers in China. Fifty-one potential ERα-active compounds across 13 categories were identified. For the first time, diisodecyl phenyl phosphate was found to have antiestrogenic activity, and three chemicals (galaxolidone, bensulfuron methyl, and UV234) were plausible ERα ligands. Among the 51 identified compounds, 12 were detected in the aquatic environment for the first time, and the concentration of N-phenyl-2-naphthylamine, a widely used antioxidant in rubber products, was up to 1469 and 1190 ng/L in source and drinking water, respectively. This study demonstrated the widespread presence of known and unknown ERα estrogenic and antiestrogenic pollutants in the major rivers that serve as key sources of drinking water in China and the low removal efficiency of these chemicals in drinking water treatment plants.


Subject(s)
Drinking Water , Endocrine Disruptors , Environmental Pollutants , Water Pollutants, Chemical , Estrogen Receptor alpha/chemistry , Estrogen Receptor alpha/metabolism , Environmental Pollutants/analysis , Drinking Water/analysis , Receptors, Estrogen , Mass Spectrometry , Endocrine Disruptors/analysis , Endocrine Disruptors/chemistry , Water Pollutants, Chemical/analysis , Rivers , Environmental Monitoring/methods
3.
J Biomol Struct Dyn ; 41(22): 13029-13040, 2023.
Article in English | MEDLINE | ID: mdl-37154819

ABSTRACT

Regardless to overwhelming quantum of cancer research worldwide, there are few drugs on the market to treat disease conditions. This is owing to multiple process inferences of drug targets in integrated pathways for invasion, growth, and metastasis. Over the past years, the death rate due to breast cancer has been increasing, that set the stage for improved better treatment. Therefore, there is a persistent and vital demand for innovative development of drugs to treat breast cancer. Many studies have reported that more than 60% of breast cancers are Estrogen receptor-α (ERα)-positive tumours and a key transcription factor, Estrogen receptor-α (ERα) was believed to promote proliferation of breast cancer cells. In this study, 150 ns of molecular dynamics was performed for protein-ligand complex to retrieve the potential stable conformations. The most populated dynamics cluster of 4-Hydroxytamoxifen intact with active site amino acid was selected to generate dynamacophore model (dynamic pharmacophore). Further, internal model validation with AU-ROC values ∼0.93 indicate the best model to screen library. The refined hits are funnelled in pharmacokinetics/dynamics, CDOCKER molecular docking, MM-GBSA and density functional theory to identify the promising ERα ligand candidates.Communicated by Ramaswamy H. Sarma.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/pathology , Estrogen Receptor alpha/chemistry , Molecular Docking Simulation , Receptors, Estrogen , Ligands , Early Detection of Cancer , Molecular Dynamics Simulation
4.
Molecules ; 28(7)2023 Mar 29.
Article in English | MEDLINE | ID: mdl-37049810

ABSTRACT

Despite the significant outcomes attained by scientific research, breast cancer (BC) still represents the second leading cause of death in women. Estrogen receptor-positive (ER+) BC accounts for the majority of diagnosed BCs, highlighting the disruption of estrogenic signalling as target for first-line treatment. This goal is presently pursued by inhibiting aromatase (AR) enzyme or by modulating Estrogen Receptor (ER) α. An appealing strategy for fighting BC and reducing side effects and resistance issues may lie in the design of multifunctional compounds able to simultaneously target AR and ER. In this paper, previously reported flavonoid-related potent AR inhibitors were suitably modified with the aim of also targeting ERα. As a result, homoisoflavone derivatives 3b and 4a emerged as well-balanced submicromolar dual acting compounds. An extensive computational study was then performed to gain insights into the interactions the best compounds established with the two targets. This study highlighted the feasibility of switching from single-target compounds to balanced dual-acting agents, confirming that a multi-target approach may represent a valid therapeutic option to counteract ER+ BC. The homoisoflavone core emerged as a valuable natural-inspired scaffold for the design of multifunctional compounds.


Subject(s)
Aromatase Inhibitors , Aromatase , Breast Neoplasms , Drug Design , Estrogen Receptor alpha , Flavonoids , Breast Neoplasms/drug therapy , Breast Neoplasms/enzymology , Breast Neoplasms/metabolism , Aromatase Inhibitors/chemical synthesis , Aromatase Inhibitors/chemistry , Aromatase Inhibitors/pharmacology , Flavonoids/chemical synthesis , Flavonoids/chemistry , Flavonoids/pharmacology , Humans , Female , Estrogen Receptor alpha/antagonists & inhibitors , Estrogen Receptor alpha/chemistry , Estrogen Receptor alpha/metabolism , Molecular Dynamics Simulation , Aromatase/chemistry , Aromatase/metabolism , Thermodynamics , Inhibitory Concentration 50 , Molecular Docking Simulation
5.
Sci Total Environ ; 868: 161454, 2023 Apr 10.
Article in English | MEDLINE | ID: mdl-36638987

ABSTRACT

The evaluation of single substances or environmental samples for their genotoxic or estrogenic potential is highly relevant for human- and environment-related risk assessment. To examine the effects on a mechanism-specific level, standardized cell-based in vitro methods are widely applied. However, these methods include animal-derived components like fetal bovine serum (FBS) or rat-derived liver homogenate fractions (S9-mixes), which are a source of variability, reduced assay reproducibility and ethical concerns. In our study, we evaluated the adaptation of the cell-based in vitro OECD test guidelines TG 487 (assessment of genotoxicity) and TG 455 (detection of estrogenic activity) to an animal-component-free methodology. Firstly, the human cell lines A549 (for OECD TG 487), ERα-CALUX® and GeneBLAzer™ ERα-UAS-bla GripTite™ (for OECD TG 455) were investigated for growth in a chemically defined medium without the addition of FBS. Secondly, the biotechnological S9-mix ewoS9R was implemented in comparison to the induced rat liver S9 to simulate in vivo metabolism capacities in both OECD test guidelines. As a model compound, Benzo[a]pyrene was used due to its increased genotoxicity and endocrine activity after metabolization. The metabolization of Benzo[a]Pyrene by S9-mixes was examined via chemical analysis. All cell lines (A549, ERα-CALUX® and GeneBLAzer™ Erα-UAS-bla GripTite™) were successfully cultivated in chemically defined media without FBS. The micronucleus assay could not be conducted in chemically defined medium due to formation of cell clusters. The methods for endocrine activity assessment could be conducted in chemically defined media or reduced FBS content, but with decreased assay sensitivity. The biotechnological ewoS9R showed potential to replace rat liver S9 in the micronucleus in FBS-medium with A549 cells and in the ERα-CALUX® assay in FBS- and chemically defined medium. Our study showed promising steps towards an animal-component free toxicity testing. After further improvements, the new methodology could lead to more reproducible and reliable results for risk assessment.


Subject(s)
Animal Testing Alternatives , Toxicity Tests , Animals , Humans , Rats , Benzo(a)pyrene/chemistry , Estrogen Receptor alpha/chemistry , Micronucleus Tests/methods , Organisation for Economic Co-Operation and Development , Reproducibility of Results , Animal Testing Alternatives/methods , Animal Testing Alternatives/standards , A549 Cells , Toxicity Tests/methods
6.
J Biomol Struct Dyn ; 41(20): 11078-11100, 2023 12.
Article in English | MEDLINE | ID: mdl-36537313

ABSTRACT

A detailed multistep framework combining quantitative structure-activity relationship, global reactivity, absorption, distribution, metabolism and elimination properties, molecular docking and molecular dynamics simulation (MD) on a series of Selective Estrogen Receptor Down-Regulators (SERDs) interacting with Estrogen Receptor α (ERα) has been performed. The partial least squares regression method derived an empirical model with better predictive capability. The results of global reactivity descriptors revealed that all the compounds are considered strong electrophiles, allowing them to participate in polar reactions more easily. The Brain Or IntestinaL EstimateD permeation diagram revealed that compounds 49 and 31 were predicted to be well absorbed by the human gastrointestinal tract and would not enter the brain. The elucidation of the binding mode between the most active compounds that comply with Lipinski's and Veber's rules from the dataset and ERα targets was explored by molecular docking. The MD simulations were performed for 100 ns on the best compounds, which indicated their stability state under dynamics simulations. These findings are expected to help predict the anticancer activities of the studied SERD compounds and better understand their binding mechanism with ERα targets.Communicated by Ramaswamy H. Sarma.


Subject(s)
Breast Neoplasms , Estrogen Receptor alpha , Humans , Female , Estrogen Receptor alpha/chemistry , Receptors, Estrogen , Molecular Docking Simulation , Breast Neoplasms/drug therapy , Molecular Dynamics Simulation , Quantitative Structure-Activity Relationship
7.
Comput Biol Med ; 152: 106403, 2023 01.
Article in English | MEDLINE | ID: mdl-36543006

ABSTRACT

Breast cancer is the main cancer type with more than 2.2 million cases in 2020, and is the principal cause of death in women; with 685000 deaths in 2020 worldwide. The estrogen receptor is involved at least in 70% of breast cancer diagnoses, and the agonist and antagonist properties of the drug in this receptor play a pivotal role in the control of this illness. This work evaluated the agonist and antagonist mechanisms of 30 cannabinoids by employing molecular docking and dynamic simulations. Compounds with docking scores < -8 kcal/mol were analyzed by molecular dynamic simulation at 300 ns, and relevant insights are given about the protein's structural changes, centered on the helicity in alpha-helices H3, H8, H11, and H12. Cannabicitran was the cannabinoid that presented the best relative binding-free energy (-34.96 kcal/mol), and based on rational modification, we found a new natural-based compound with relative binding-free energy (-44.83 kcal/mol) better than the controls hydroxytamoxifen and acolbifen. Structure modifications that could increase biological activity are suggested.


Subject(s)
Breast Neoplasms , Cannabinoids , Female , Humans , Estrogen Receptor alpha/chemistry , Molecular Docking Simulation , Cannabinoids/pharmacology , Molecular Dynamics Simulation , Breast Neoplasms/drug therapy , Ligands
8.
Hematol Oncol Clin North Am ; 37(1): 169-181, 2023 02.
Article in English | MEDLINE | ID: mdl-36435608

ABSTRACT

The estrogen receptor is a key driver of estrogen receptor-positive breast cancers. Accumulating evidence indicates that the ESR1 ligand-binding domain mutations have an important role in acquired endocrine resistance, mainly to treatment with aromatase inhibitors. The identification, monitoring, and targeting of ESR1 mutations is an evolving field of major interest given the potential of improved outcomes in metastatic hormone receptor-positive breast cancers. Herein, the authors review the current evidence and rationale for exploiting the ESR1 mutations as a potential biomarker and therapeutic target. The authors discuss the role of ESR1 testing and current therapeutic efforts to target these mutations.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Estrogen Receptor alpha/genetics , Estrogen Receptor alpha/chemistry , Receptors, Estrogen/genetics , Receptors, Estrogen/therapeutic use , Mutation
9.
Biochemistry ; 61(22): 2490-2494, 2022 11 15.
Article in English | MEDLINE | ID: mdl-36239332

ABSTRACT

Estrogen receptor alpha (ERα) is a ligand-responsive transcription factor critical for sex determination and development. Recent reports challenge the canonical view of ERα function by suggesting an activity beyond binding dsDNA at estrogen-responsive promotor elements: association with RNAs in vivo. Whether these interactions are direct or indirect remains unknown, which limits the ability to understand the extent, specificity, and biological role of ERα-RNA binding. Here we demonstrate that an extended DNA-binding domain of ERα directly binds a wide range of RNAs in vitro with structural specificity. ERα binds RNAs that adopt a range of hairpin-derived structures independent of sequence, while interacting poorly with single- and double-stranded RNA. RNA affinities are only 4-fold weaker than consensus dsDNA and significantly tighter than nonconsensus dsDNA sequences. Moreover, RNA binding is competitive with DNA binding. Together, these data show that ERα utilizes an extended DNA-binding domain to achieve a high-affinity/low-specificity mode for interacting with RNA.


Subject(s)
Estrogen Receptor alpha , RNA , Estrogen Receptor alpha/chemistry , Protein Binding , RNA/genetics , RNA/metabolism , Transcription Factors/metabolism , DNA/chemistry
10.
Biophys J ; 121(19): 3651-3662, 2022 10 04.
Article in English | MEDLINE | ID: mdl-35778844

ABSTRACT

Mutations of the intracellular estrogen receptor alpha (ERα) is implicated in 70% of breast cancers. Therefore, it is of considerable interest to image various mutants (L536S, Y537S, D538G) in living cancer cell lines, particularly as a function of various anticancer drugs. We therefore developed a small (13 kDa) Affimer, which, after fluorescent labeling, is able to efficiently label ERα by traveling through temporary pores in the cell membrane, created by the toxin streptolysin O. The Affimer, selected by a phage display, predominantly labels the Y537S mutant and can tell the difference between L536S and D538G mutants. The vast majority of Affimer-ERαY537S is in the nucleus and is capable of an efficient, unrestricted navigation to its target DNA sequence, as visualized by single-molecule fluorescence. The Affimer can also differentiate the effect of selective estrogen receptor modulators. More generally, this is an example of a small binding reagent-an Affimer protein-that can be inserted into living cells with minimal perturbation and high efficiency, to image an endogenous protein.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Estrogen Receptor alpha/chemistry , Estrogen Receptor alpha/genetics , Estrogen Receptor alpha/metabolism , Female , Humans , MCF-7 Cells , Mutation , Receptors, Estrogen/genetics , Receptors, Estrogen/therapeutic use , Selective Estrogen Receptor Modulators/therapeutic use
11.
Org Lett ; 24(19): 3532-3537, 2022 05 20.
Article in English | MEDLINE | ID: mdl-35546524

ABSTRACT

The diversity of cyclic peptides was expanded by elaborating Mitsunobu macrocyclization, tethering various hydroxy acid building blocks with different Nε-amine substituents. This new strategy was then applied in synthesizing peptidomimetic estrogen receptor modulator (PERM) analogs on the solid support. The PERM analogs exhibited increased serum peptidase stability, cell penetration, and estrogen receptor α binding affinity. Studying diversity-oriented methods for preparing azacyclopeptides provides a new tool for macrocycle construction and further structural information for optimizing ERα modulators for ER positive breast cancers.


Subject(s)
Breast Neoplasms , Peptidomimetics , Breast Neoplasms/metabolism , Estrogen Receptor alpha/chemistry , Estrogen Receptor alpha/metabolism , Female , Humans , Peptides, Cyclic , Protein Binding
12.
Mol Cell Endocrinol ; 539: 111467, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34626731

ABSTRACT

Estrogen receptor alpha (ERα) and beta (ERß) are members of the nuclear receptor superfamily, playing widespread functions in reproductive and non-reproductive tissues. Beside the canonical function of ERs as nuclear receptors, in this review, we summarize our current understanding of extra-nuclear, membrane-initiated functions of ERs with a specific focus on ERα. Over the last decade, in vivo evidence has accumulated to demonstrate the physiological relevance of this ERα membrane-initiated-signaling from mouse models to selective pharmacological tools. Finally, we discuss the perspectives and future challenges opened by the integration of extra-nuclear ERα signaling in physiology and pathology of estrogens.


Subject(s)
Cell Membrane/metabolism , Cell Nucleus/metabolism , Estrogen Receptor alpha/metabolism , Animals , Disease Models, Animal , Estrogen Receptor alpha/chemistry , Estrogen Receptor alpha/genetics , Estrogen Receptor beta/chemistry , Estrogen Receptor beta/metabolism , Humans , Mutation , Protein Domains , Signal Transduction
13.
Cell ; 184(20): 5215-5229.e17, 2021 09 30.
Article in English | MEDLINE | ID: mdl-34559986

ABSTRACT

Estrogen receptor α (ERα) is a hormone receptor and key driver for over 70% of breast cancers that has been studied for decades as a transcription factor. Unexpectedly, we discover that ERα is a potent non-canonical RNA-binding protein. We show that ERα RNA binding function is uncoupled from its activity to bind DNA and critical for breast cancer progression. Employing genome-wide cross-linking immunoprecipitation (CLIP) sequencing and a functional CRISPRi screen, we find that ERα-associated mRNAs sustain cancer cell fitness and elicit cellular responses to stress. Mechanistically, ERα controls different steps of RNA metabolism. In particular, we demonstrate that ERα RNA binding mediates alternative splicing of XBP1 and translation of the eIF4G2 and MCL1 mRNAs, which facilitates survival upon stress conditions and sustains tamoxifen resistance of cancer cells. ERα is therefore a multifaceted RNA-binding protein, and this activity transforms our knowledge of post-transcriptional regulation underlying cancer development and drug response.


Subject(s)
Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Drug Resistance, Neoplasm , Estrogen Receptor alpha/metabolism , RNA-Binding Proteins/metabolism , Animals , Base Sequence , Breast Neoplasms/genetics , Cell Line, Tumor , Cell Survival/drug effects , Cell Survival/genetics , Disease Progression , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Estrogen Receptor alpha/chemistry , Eukaryotic Initiation Factor-4G/genetics , Eukaryotic Initiation Factor-4G/metabolism , Female , Gene Expression Regulation, Neoplastic/drug effects , Genomics , Humans , Mice, Inbred NOD , Myeloid Cell Leukemia Sequence 1 Protein/genetics , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Oncogenes , Protein Binding/drug effects , Protein Domains , RNA Splicing/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Stress, Physiological/drug effects , Stress, Physiological/genetics , Tamoxifen/pharmacology , X-Box Binding Protein 1/metabolism
14.
Int J Mol Sci ; 22(17)2021 Aug 29.
Article in English | MEDLINE | ID: mdl-34502280

ABSTRACT

Estrogen receptor alpha (ERα) is a ligand-dependent transcriptional factor in the nuclear receptor superfamily. Many structures of ERα bound with agonists and antagonists have been determined. However, the dynamic binding patterns of agonists and antagonists in the binding site of ERα remains unclear. Therefore, we performed molecular docking, molecular dynamics (MD) simulations, and quantum mechanical calculations to elucidate agonist and antagonist dynamic binding patterns in ERα. 17ß-estradiol (E2) and 4-hydroxytamoxifen (OHT) were docked in the ligand binding pockets of the agonist and antagonist bound ERα. The best complex conformations from molecular docking were subjected to 100 nanosecond MD simulations. Hierarchical clustering was conducted to group the structures in the trajectory from MD simulations. The representative structure from each cluster was selected to calculate the binding interaction energy value for elucidation of the dynamic binding patterns of agonists and antagonists in the binding site of ERα. The binding interaction energy analysis revealed that OHT binds ERα more tightly in the antagonist conformer, while E2 prefers the agonist conformer. The results may help identify ERα antagonists as drug candidates and facilitate risk assessment of chemicals through ER-mediated responses.


Subject(s)
Estradiol/metabolism , Estrogen Receptor alpha/agonists , Estrogen Receptor alpha/antagonists & inhibitors , Estrogen Receptor alpha/metabolism , Tamoxifen/analogs & derivatives , Estradiol/chemistry , Estrogen Receptor alpha/chemistry , Humans , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , Ligands , Molecular Docking Simulation , Molecular Dynamics Simulation , Quantum Theory , Tamoxifen/chemistry , Tamoxifen/metabolism
15.
J Steroid Biochem Mol Biol ; 213: 105966, 2021 10.
Article in English | MEDLINE | ID: mdl-34416373

ABSTRACT

The human estrogen receptor alpha (ERα) is an important regulator in breast cancer development and progression. The frequent ERα mutations in the ligand-binding domain (LBD) can increase the resistance of antiestrogen drugs, highlighting the need to develop new drugs to target ERα-positive breast cancer. In this study, we combined molecular docking, molecular dynamics simulations and binding free energy calculations to develop a structure-based virtual screening workflow to identify hit compounds capable of interfering with the recognition of ERα by the specific response element of DNA. A druggable pocket on the DNA binding domain (DBD) of ERα was identified as the potential binding site. The hits binding modes were further analyzed to reveal the structural characteristics of the DBD-inhibitor complexes. The core structure of the lead molecules was synthesized and was found to inhibit the E2-induced cell proliferation in MCF-7 cell lines. These findings provide an insight into the structural basis of ligand-ERα for alternate sites beyond the LBD-based pocket. The core structure proposed in this study could potentially be used as the lead molecule for further rational optimization of the antiestrogen drug structure with stronger binding of DBD and higher activity.


Subject(s)
Antineoplastic Agents/pharmacology , DNA/chemistry , Estrogen Antagonists/pharmacology , Estrogen Receptor alpha/chemistry , Neoplasm Proteins/chemistry , Response Elements , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/metabolism , Binding Sites , Cell Proliferation/drug effects , DNA/metabolism , Dose-Response Relationship, Drug , Estrogen Antagonists/chemical synthesis , Estrogen Antagonists/metabolism , Estrogen Receptor alpha/antagonists & inhibitors , Estrogen Receptor alpha/genetics , Estrogen Receptor alpha/metabolism , Female , Humans , Ligands , MCF-7 Cells , Molecular Docking Simulation , Molecular Dynamics Simulation , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Nucleic Acid Conformation , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Structure-Activity Relationship , Thermodynamics , User-Computer Interface
16.
Chembiochem ; 22(17): 2711-2720, 2021 09 02.
Article in English | MEDLINE | ID: mdl-34107164

ABSTRACT

An i-i+4 or i-i+3 bimane-containing linker was introduced into a peptide known to target Estrogen Receptor alpha (ERα), in order to stabilise an α-helical geometry. These macrocycles were studied by CD and NMR to reveal the i-i+4 constrained peptide adopts a 310 -helical structure in solution, and an α-helical conformation on interaction with the ERα coactivator recruitment surface in silico. An acyclic bimane-modified peptide is also helical, when it includes a tryptophan or tyrosine residue; but is significantly less helical with a phenylalanine or alanine residue, which indicates such a bimane modification influences peptide structure in a sequence dependent manner. The fluorescence intensity of the bimane appears influenced by peptide conformation, where helical peptides displayed a fluorescence increase when TFE was added to phosphate buffer, compared to a decrease for less helical peptides. This study presents the bimane as a useful modification to influence peptide structure as an acyclic peptide modification, or as a side-chain constraint to give a macrocycle.


Subject(s)
Cysteine/chemistry , Peptides/chemistry , Amino Acid Sequence , Bridged Bicyclo Compounds, Heterocyclic/chemistry , Circular Dichroism , Estrogen Receptor alpha/chemistry , Magnetic Resonance Spectroscopy , Peptides/chemical synthesis , Protein Binding , Protein Conformation, alpha-Helical , Spectrometry, Fluorescence
17.
J Med Chem ; 64(11): 7575-7595, 2021 06 10.
Article in English | MEDLINE | ID: mdl-34056898

ABSTRACT

The estrogen receptor α (ERα) is identified as an effective target for the treatment of ERα+ breast cancer; thus, discovery of novel selective estrogen receptor degraders (SERDs) are developed as an effective method to overcome the resistance of breast cancer. Herein, the hot-spot residues for protein-ligand interaction between SERDs and ERα are analyzed by molecular dynamic simulation technology, focusing on the hot-spot residues for four series of designed and synthesized SERDs. SAR studies revealed that while the acrylic acid moiety of AZD9496 is scaffold hopping into benzoic acid, compound D24 exhibits potent binding affinity with ERα, good degradation efficacy of ERα, and inhibitory effect against the MCF-7 breast cancer cell line. Besides, D24 also displays good antitumor efficacy in the MCF-7 human breast cancer xenograft model in vivo, favorable pharmacokinetic properties, excellent druggability, and good safety property, making D24 as a promising drug candidate of SERD for further evaluation.


Subject(s)
Antineoplastic Agents/chemistry , Benzoic Acid/chemistry , Estrogen Receptor alpha/metabolism , Administration, Oral , Animals , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Benzoic Acid/metabolism , Benzoic Acid/pharmacology , Benzoic Acid/therapeutic use , Binding Sites , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Cell Proliferation/drug effects , Down-Regulation/drug effects , Drug Design , Estrogen Receptor alpha/chemistry , Female , Half-Life , Humans , Ligands , MCF-7 Cells , Mice , Molecular Dynamics Simulation , Structure-Activity Relationship , Thermodynamics , Xenograft Model Antitumor Assays
18.
Breast Cancer Res ; 23(1): 54, 2021 05 12.
Article in English | MEDLINE | ID: mdl-33980285

ABSTRACT

BACKGROUND: Endocrine therapy remains the mainstay of treatment for estrogen receptor-positive (ER+) breast cancer. Constitutively active mutations in the ligand binding domain of ERα render tumors resistant to endocrine agents. Breast cancers with the two most common ERα mutations, Y537S and D538G, have low sensitivity to fulvestrant inhibition, a typical second-line endocrine therapy. Lasofoxifene is a selective estrogen receptor modulator with benefits on bone health and breast cancer prevention potential. This study investigated the anti-tumor activity of lasofoxifene in breast cancer xenografts expressing Y537S and D538G ERα mutants. The combination of lasofoxifene with palbociclib, a CDK4/6 inhibitor, was also evaluated. METHODS: Luciferase-GFP tagged MCF7 cells bearing wild-type, Y537S, or D538G ERα were injected into the mammary ducts of NSG mice (MIND model), which were subsequently treated with lasofoxifene or fulvestrant as single agents or in combination with palbociclib. Tumor growth and metastasis were monitored with in vivo and ex vivo luminescence imaging, terminal tumor weight measurements, and histological analysis. RESULTS: As a monotherapy, lasofoxifene was more effective than fulvestrant at inhibiting primary tumor growth and reducing metastases. Adding palbociclib improved the effectiveness of both lasofoxifene and fulvestrant for tumor suppression and metastasis prevention at four distal sites (lung, liver, bone, and brain), with the combination of lasofoxifene/palbociclib being generally more potent than that of fulvestrant/palbociclib. X-ray crystallography of the ERα ligand binding domain (LBD) shows that lasofoxifene stabilizes an antagonist conformation of both wild-type and Y537S LBD. The ability of lasofoxifene to promote an antagonist conformation of Y537S, combined with its long half-life and bioavailability, likely contributes to the observed potent inhibition of primary tumor growth and metastasis of MCF7 Y537S cells. CONCLUSIONS: We report for the first time the anti-tumor activity of lasofoxifene in mouse models of endocrine therapy-resistant breast cancer. The results demonstrate the potential of using lasofoxifene as an effective therapy for women with advanced or metastatic ER+ breast cancers expressing the most common constitutively active ERα mutations.


Subject(s)
Breast Neoplasms/drug therapy , Pyrrolidines/therapeutic use , Receptors, Estrogen/metabolism , Selective Estrogen Receptor Modulators/therapeutic use , Tetrahydronaphthalenes/therapeutic use , Animals , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Disease Models, Animal , Estrogen Receptor alpha/antagonists & inhibitors , Estrogen Receptor alpha/chemistry , Estrogen Receptor alpha/genetics , Female , Fulvestrant/therapeutic use , Humans , MCF-7 Cells , Mice , Mutation , Neoplasm Metastasis/prevention & control , Piperazines/therapeutic use , Protein Binding , Protein Conformation , Protein Kinase Inhibitors/therapeutic use , Pyridines/therapeutic use , Pyrrolidines/chemistry , Receptors, Estrogen/genetics , Selective Estrogen Receptor Modulators/chemistry , Tetrahydronaphthalenes/chemistry , Treatment Outcome
19.
Sci Rep ; 11(1): 10509, 2021 05 18.
Article in English | MEDLINE | ID: mdl-34006920

ABSTRACT

Protein stability limitations often hamper the exploration of proteins as drug targets. Here, we show that the application of PROSS server algorithms to the ligand-binding domain of human estrogen receptor alpha (hERα) enabled the development of variant ERPRS* that comprises 24 amino acid substitutions and exhibits multiple improved characteristics. The protein displays enhanced production rates in E. coli, crystallizes readily and its thermal stability is increased significantly by 23 °C. hERα is a nuclear receptor (NR) family member. In NRs, protein function is allosterically regulated by its interplay with small molecule effectors and the interaction with coregulatory proteins. The in-depth characterization of ERPRS* shows that these cooperative effects are fully preserved despite that 10% of all residues were substituted. Crystal structures reveal several salient features, i.e. the introduction of a tyrosine corner in a helix-loop-helix segment and the formation of a novel surface salt bridge network possibly explaining the enhanced thermal stability. ERPRS* shows that prior successes in computational approaches for stabilizing proteins can be extended to proteins with complex allosteric regulatory behaviors as present in NRs. Since NRs including hERα are implicated in multiple diseases, our ERPRS* variant shows significant promise for facilitating the development of novel hERα modulators.


Subject(s)
Estrogen Receptor alpha/genetics , Algorithms , Allosteric Regulation , Amino Acid Substitution , Computational Biology , Estrogen Receptor alpha/chemistry , Estrogen Receptor alpha/metabolism , Humans , Protein Binding , Protein Conformation , Protein Stability
20.
Gene ; 791: 145726, 2021 Jul 30.
Article in English | MEDLINE | ID: mdl-34010704

ABSTRACT

Traditional herbal medicine (THM) comprises a vast number of natural compounds. Most of them are metabolized into different structures after administration, which makes the clarification of THM's mode of action more complicated. To evaluate the biological activities of those components and metabolites, in silico simulation technology is helpful. We focused on mixed-solvent molecular dynamics (MD) simulation for druggability assessment of natural products. Mixed-solvent MD is an in silico simulation method for the exploration of ligand-binding sites on target proteins, which uses water and an organic molecule mixture. The selection of organic small molecules is an important factor for predicting the characteristics of natural products. In this study, we used the known crystal structure of estrogen receptors with genistein as a test case and explored fragments reflecting the characteristics of natural products. We found that structures with a 4-pyrone structure are more often included in the natural products database compared with the DrugBank database, and we selectively detected the known-binding sites of estrogen receptor α and ß. The results indicate that the 4-pyrone structure might be promising for predicting the protein druggability of flavonoids. Additionally, mixed-solvent MD simulation discriminates the selectivity of genistein between estrogen receptor ß and α, indicating that the simulation can be evaluated using indices that differ from those of traditional ligand docking. Although this approach is still in its early stages, it has the potential to provide valuable information for understanding the diverse biological activities of natural products.


Subject(s)
Medicine, Traditional/methods , Molecular Docking Simulation/methods , Plants, Medicinal/chemistry , Animals , Binding Sites/drug effects , Biological Products/chemistry , Computer Simulation , Databases, Factual , Estrogen Receptor alpha/chemistry , Estrogen Receptor alpha/metabolism , Estrogen Receptor beta/chemistry , Estrogen Receptor beta/metabolism , Flavonoids/chemistry , Genistein/pharmacology , Humans , Ligands , Molecular Dynamics Simulation , Plants, Medicinal/metabolism , Protein Binding/drug effects , Receptors, Estrogen/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...